Poisson Distribution

Consider a random variable that gives the number of occurrences over a specified time or space. The specified time may be a 1-day period or a 1-week period and the specified space may be a 1 km radius. This random variable X is a random variable with Poisson distribution denoted by $X \sim P o(\lambda)$, where λ is the average number of occurrences in the specified time or space.

Here are the properties of a Poisson experiment that focus on occurrences in a given interval of time or a region of space:

1. the probabilities of occurrences for any two intervals of the same length are equal; and
2. the occurrence or non-occurrence in a given interval does not in any way affect the occurrence or non-occurrence in any other interval.

For a discrete random variable X that follows a Poisson distribution denoted by $X \sim P o(\lambda)$, the probability mass function is

$$
P(x)= \begin{cases}\frac{e^{-\lambda} \cdot \lambda^{x}}{x!}, & x=0,1,2,3, \ldots \\ 0 \quad, & \text { otherwise }\end{cases}
$$

where λ is the average number of occurrences in a given interval of time or a region of space and e is Euler's number, approximately equal to 2.71828 .

The mean and the variance of a Poisson random variable are both equal to λ. That is, for a Poisson distribution,

$$
E[X]=\lambda \quad \text { and } \quad \operatorname{Var}[X]=\lambda .
$$

Example 2.8

Suppose the number of customers served by a bank teller follows a Poisson distribution and the average number of customers served by a bank teller in a 15 -minute period is 4 .

1. Find the probability mass function for the number of customers served by this bank teller in a 15 -minute period.
2. Find the probability of her serving exactly 3 customers in a 15 -minute period.
3. Find the probability of her serving at least 2 customers in a 15 -minute period.

Solution.

In this case, the number of customers served is a Poisson random variable denoted by $X \sim \operatorname{Po}(\lambda)$.

1. The probability mass function is given by

$$
P(X=x)= \begin{cases}\frac{e^{-4} \cdot 4^{x}}{x!}, & x=0,1,2,3, \ldots \\ 0 \quad, & \text { otherwise }\end{cases}
$$

2. $P(X=3)=\frac{e^{-4} \cdot 4^{3}}{3!}=.1954$
3. $P(X \geq 2)=P(X=2)+P(X=3)+\ldots$

However, note that $P(X \geq 2)=1-[P(X=0)+P(X=1)]$.
Thus, $P(X \geq 2)=1-\left(\frac{e^{4} 4^{0}}{0!}+\frac{e^{-4} 4^{1}}{1!}\right)=1-(.0183+.0733)=.9083$

$$
\square
$$

