The slope and y-intercept of the best fit line is interpreted in a manner similar to the interpretation of such in a linear equation. That is, the slope represents the expected amount of change in Y for every one unit change in X. On the other hand, the y-intercept is the expected value of Y when the value of $X=0$ provided the data includes $X=0$.

Testing the Significance of β_{1}

In addition to the best fit line that describes the linear relationship between X and Y, you can also make inferences regarding the regression parameters. However, inferences concerning bis is particularly important

Diagnostic Checking

An inference regarding regression parameters is valid provided that assumptions underlying the simple linear regression model are satisfied. These assumptions include the following:

Measure of Model Adequacy

The coefficient of determination r^{2} (or R^{2}), also known as the measure of goodness-of-fit, discussed previously in correlation analysis is likewise computed to assess further the usefulness of the simple linear regression model for prediction purposes.

In simple linear regression analysis, r^{2} measures the total variation in the Y values that is explained by the simple linear regression model

