Pop-Up!

Bayes's Rule

If the events $B_{1}, B_{2}, B_{3}, \ldots, B_{r}, \ldots, B_{k}$ constitute a partition of the sample space S such that $P\left(B_{i}\right) \neq 0$ for $i=1,2,3, \ldots, r, \ldots, k$, then for any event A in S such that $P(A) \neq 0$,

$$
P\left(B_{r} \mid A\right)=\frac{P\left(B_{r} \cap A\right)}{P(A)}=\frac{P\left(B_{r}\right) P\left(A \mid B_{r}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)} .
$$

Bayes's Rule for the case of two stages is simplified as

$$
P\left(B_{r} \mid A\right)=\frac{P\left(B_{r}\right) P\left(A \mid B_{r}\right)}{P\left(B_{1}\right) P\left(A \mid B_{1}\right)+P\left(B_{2}\right) P\left(A \mid B_{2}\right)} .
$$

