Mean of a Random Variable

The measure of the central location of a random variable is called the expected value or mean of that random variable. It is calculated as the weighted mean of the values where the weights are their corresponding probabilities.

Example 1.9
Let X be the number of heads obtained in tossing a coin. Find the expected value of the number of heads.

Solution.

Recall from lesson 1 the probability mass function for the number of heads in tossing a coin.

x	0	1
$P(X=x)$	$\frac{1}{2}$	$\frac{1}{2}$

The expected value or mean of X is calculated as

$$
E[X]=\mu_{X}=\sum_{i=1}^{k} x_{i} \cdot P\left(x_{i}\right)=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2} .
$$

Thus, the expected number of heads is $\frac{1}{2}$.
Note that the expected value of the random variable X need not be one of the possible values of X. The result is the long-run average of X. This means that if you toss a coin several number of times or an infinite number of times, the average of the number of heads obtained is $\frac{1}{2}$.

