Mean and Variance of a Discrete Random Variable

Combining probabilities and the associated values that could be obtained results to a quantity called the mathematical expectation or expected value, the weighted mean of the values with their corresponding probabilities as the weights. A measure of the variability, dispersion, or spread of the values is the variance, the sum of the squared deviations of these values from their expected value. The positive square root of the variance is the standard deviation of the values.

Given a discrete random variable X with probability mass function,

x	x_{1}	x_{2}	\ldots	x_{k}
$p(x)$	$p\left(x_{1}\right)$	$p\left(x_{2}\right)$	\ldots	$p\left(x_{k}\right)$

the mean and variance of X can be obtained from the formulas below.

Pop-Up!

The mean of X is given by $\mu_{X}=\sum_{i=1}^{k} x_{i} \cdot p\left(x_{i}\right)$.

The following are some important points to remember in relation to the mean and variance of a discrete random variable.

1. The mean of a random variable X (that is, the expected value) is a measure of the center of the possible values of X. It is actually the weighted mean of these values of X, with $p\left(x_{i}\right)$ as the weight assigned to the value x_{i}. The mean of a random variable X need not be one of its mass points.
2. The positive square root of the variance of a random variable is called its standard deviation.

Figure 6.2 Varying Levels of Variability, $\sigma_{1}>\sigma_{2}>\sigma_{3}$

I	\square	III	!	IIT
-	I	If	I	I
I	I	I	I	I
1	,	I	I	I
1	I	1	■	1
		\square		■1T

