Sampling Distribution of the Sample Mean $ar{m{x}}$

Sampling is practically done once in order to get a sample that will serve as basis for statistical inferences concerning the population. However, the process may be repeated under basically the same conditions that lead to well-defined possible outcomes. This is why sampling is considered a random experiment.

Appropriate statistics summarizes the data obtained from a sample drawn ramdomly from the population. Examples of such statistics are the sample mean \bar{x} , the sample variance s^2 , and the sample proportion \hat{p} . Because these statistics vary from sample to sample, they are considered random variables. As such, these statistics have probability distributions called *sampling distributions*.

Possible Samples	

Table 8.1 shows that \overline{x} varies from sample to sample indicating that the statistic \overline{x} is indeed a random variable. In chapter 6, a random variable was shown to be characterized by its probability distribution. Constructing the probability distribution of \overline{x} will result to the sampling distribution of \overline{x} shown in table 8.2.

Table 8.2 Sampling Distribution of \overline{x} for Data in Table 8.1

\overline{x}	3	4	5	6	7
$p(\overline{x})$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Means, variances, and standard deviations also describe sampling distributions of statistics. You obtain them in a similar manner as that of the means, variances, and standard deviations of any random variable X which you learned in the previous chapter.

The standard deviation of \overline{x} is

$$\sigma_{\overline{x}} = \sqrt{\operatorname{Var}\left(\overline{x}\right)} = \sqrt{1.\overline{6667}} \approx 1.2910.$$

This is also referred to as the *standard error* of \overline{x} .

A standard error is the standard deviation of a statistic.

The following can be observed from the mean and variance of both the sampling distribution of \overline{x} and the distribution of X:

• The mean of the sampling distribution of \overline{x} is equal to the mean of the distribution of *X*, that is $\mu_{\overline{x}} = \mu_X$.

Figure 8.1 on the next page presents graphically results from this important theorem. It can be observed that:

- The shape of the sampling distribution of \overline{x} is the same as the shape of the distribution of X. Both are normally distributed.
- The mean of the sampling distribution of \bar{x} is equal to the mean of

